
Ultraviolet divergence and scaling in a class of singular potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 L223

(http://iopscience.iop.org/0305-4470/36/15/102)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 02/06/2010 at 11:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) L223–L227 PII: S0305-4470(03)57924-0

LETTER TO THE EDITOR

Ultraviolet divergence and scaling in a class of
singular potentials

J K Bhattacharjee1 and S Bhattacharyya2

1 Department of Theoretical Physics, Indian Association for the Cultivation of Science,
Jadavpur, Calcutta 700 032, India
2 Department of Physics, Vidyasagar College, Calcutta 700 006, India

Received 2 January 2003, in final form 4 March 2003
Published 3 April 2003
Online at stacks.iop.org/JPhysA/36/L223

Abstract
For the class of singular potentials r2 + λ

rα , the perturbation theory in λ has
an ultraviolet divergence for a range of α which causes the perturbation series
to be ordered by λZ , where Z is a fraction less than unity. We use a scaling
argument to find Z in any dimension N.

PACS numbers: 03.65.Ge, 05.10.Cc

It is quite common in nuclear and chemical physics problems to have a potential which
is attractive at large distances and repulsive at short distances. A typical example of
such a potential which has been studied extensively [1–21] is V (r) = r2 + λ

rα , where
r2 = x2

1 + x2
2 + · · · + x2

N in N-dimensional space. Clearly, the potential behaves differently
at different length scales. For large r, the attractive oscillator potential dominates, whereas
close to the origin the repulsive r−α part far outweighs the confining oscillator potential. This
is the well-known spiked oscillator. The singularity in the potential becomes stronger with
large values of α, even for λ � 1. Consequently, one focuses on the large α and small λ

situations. The minimum of the potential is at r0 = (λα)1/(2+α) which shifts towards the origin
with decreasing λ. Hence, the problem becomes quite insensitive to what happens far away
from the origin, and the exact shape of the wavefunction in the vicinity of the origin becomes
crucial. For small λ, λr−α can be treated as a perturbation over the oscillator Hamiltonian
H0 = p2 + r2. It will be seen that for sufficiently singular potentials (α � N) the perturbation
theory breaks down because of the ultraviolet divergence coming from the lower limit of the
energy integral.

Two salient features of this problem are

• the perturbed operator may not converge to the original one as λ → 0 (the Klauder
phenomenon) and

• the perturbation series is ordered in fractional powers of λ.

Here, one should note that in the literature people usually talk about the one-dimensional
problem with the Hamiltonian H = − d2

dx2 + x2 + λ
xα defined in the half-space [0,∞) with the

Dirichlet boundary condition that ψ(x) = 0 at x = 0. As a result one deals with the odd

0305-4470/03/150223+05$30.00 © 2003 IOP Publishing Ltd Printed in the UK L223

http://stacks.iop.org/ja/36/L223


L224 Letter to the Editor

wavefunctions of the original harmonic oscillator problem, for the unperturbed case. This is
identical with the three-dimensional problem we have introduced above (N = 3) so far as the
ground state is concerned. Using the theory of linear operators along with that of differential
equations and exploiting a connection between the WKB method and the Bessel function,
Harrel et al [2] showed that for N = 3 and α � 3 the perturbation series is ordered by λ

1
α−2 .

It hinted at the existence of the Klauder phenomenon in this case only, in the λ → 0 limit.
Klauder [22] discussed the problem in the context of a random process driven by H = H0 + λ

xα .
It had to do with the fact that for α � 1 and λ > 0, paths of the random process passing
through the origin form a set of measure zero. This work also showed that the convergence
problem existed in one dimension (half-space) only.

Recent numerical work of Killingbeck et al [21] shows clear evidence of λ
1

α−2 behaviour.
Use of scaling and renormalization group arguments in scattering from singular potentials by
Adhikari and Frederico [23] inspired us to explore the problem further. Scaling arguments
have always helped in finding energy levels of a variety of potentials. For potential λrµ,
scaling the coordinate by a factor γ leads to the relation E(λ) = 1

γ 2 E(λr2+µ). Choosing

γ = (
1
λ

) 1
2+µ we find E(λ) = E(1)λ

2
2+µ . Since E(1) is a constant, E(λ) ∼ λ

2
2+µ . If λ = mω2

and µ = 2 (simple harmonic oscillator), then E ∝ ω as is well known. For µ = 4, we get
another familiar result that E ∝ λ1/3. For µ = −1 and λ = e2, we get the hydrogen atom
charge dependence E ∝ e4 . In what follows we will use a scaling argument for the potential
V (r) = r2 + λ

rα . This potential is obviously very different from the potential λrµ considered
before because it supports a specific length scale r0 mentioned above. Consequently, the
scaling argument cannot be of the kind shown above. The scaling argument is now going
to be more subtle and in what follows we will show how the ordering of perturbation theory
by fractional powers of λ can be inferred from a scaling argument. The ability to obtain the
exponent is reminiscent of the scaling arguments in critical phenomena. It is interesting to
note that this kind of scaling argument was originally explored by Symanzik [24].

We begin by writing down the equation in a dimensionless form

−
[

∂2

∂x2
1

+
∂2

∂x2
2

+ · · · +
∂2

∂x2
N

]
ψ +

(
r2 +

λ

rα

)
ψ = Eψ (1)

with the Hamiltonian given by

H = −∇2
r + r2 +

λ

rα
. (2)

The unperturbed Hamiltonian

H0 = −∇2
r + r2 (3)

has a ground state energy E0 = N and the ground state wavefunction ψg ∼ e−r2/2. First-order
perturbation theory calculates the shift in energy as

E1 = 〈ψg| λr−α |ψg〉
〈ψg | ψg〉

= λ

∫ ∞
0 r−α e−r2

dNr∫ ∞
0 e−r2 dNr

= λ
�

(
N−α

2

)
�(N

2 )
(4)

for α < N . For α = N , the numerator becomes logarithmically divergent and for α > N it
diverges more strongly. Hence, the perturbation series breaks down. Making λ smaller does
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not save the situation. For α � N , the only way to produce a reasonable answer is to introduce
a cut-off in the lower limit of the integral. This cut-off can be provided by the minimum of
the potential which, however, goes to zero as λ → 0. The divergence comes from the region
close to the origin and hence the integral gets a maximum contribution from the vicinity of
the point r = 0. Therefore, the numerator of the equation (4) should look like

∫ ∞
ε

r−α dNr ,
where ε is a very small number. Since ε is λ-dependent, we can write∫ ∞

ε

r−α dNr = λ−µ (5)

where µ is some positive number, as yet unknown, independent of λ. The negative sign
ensures the fact that the integral diverges as λ → 0. Therefore,

E = E0 + AλZ

= N + AλZ (6)

where A is some number and Z = 1 − µ. The task now boils down to finding out Z. This is
of crucial importance as Z will order the perturbation series. To obtain this we use a scaling
argument. Let us say

H = −∇2
r + r2 +

λ

rα

E = E(λ)

(7)

under the scaling r = βR, the Hamiltonian H becomes

H = 1

β2

[
−∇2

R + β4R2 +
λβ2−α

Rα

]

= 1

β2
H ′. (8)

The energy levels of H and H ′ are related by

E = 1

β2
E′(ω′, λ′) (9)

where

ω′ = β2

λ′ = λβ2−α.
(10)

Let us now carry out the identical perturbation theory for H ′ as was done for H. This yields

E′ = Nβ2 + λβ2−α

〈
1

Rα

〉
. (11)

The expectation value
〈

1
Rα

〉
is given by

〈
1

Rα

〉
= λ

∫ ∞
0 R−α e−β2R2

dNR∫ ∞
0 e−β2R2 dNR

= βN

�
(

N
2

)
∫ ∞

0
RN−α−1 e−β2R2

dR. (12)

For the integral in equation (12), the discussion following equation (4) holds once again, and
the divergence of this integral α > N leads to the (λ′)−µ behaviour of the integral for λ′ → 0.
This allows us to write

E′ = Nβ2 + C(λ′)ZβN (13)
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where C is some number. Hence, from equations (9) and (10)

E = N + C(λ′)ZβN−2

= N + C(λβ2−α)ZβN−2

= N + CλZβ(2−α)Z+(N−2). (14)

This has to match equation (6) and requires

β(2−α)Z+(N−2) = 1 or Z = N − 2

α − 2
. (15)

For N = 3, we obtain the result Z = 1
α−2 established by Harrel [2].

We conclude by noting that this result does indeed order the perturbation theory by powers
of λz. To do this, we need to examine the second perturbation theory which would yield the
additional energy E2 given by

E2 =
∑
n 
=0

λ2

〈
ψg

∣∣ 1
rα

∣∣ ψn

〉 〈
ψn

∣∣ 1
rα

∣∣ ψg

〉
E0 − En

. (16)

In the above we assume that ψg and ψn are normalized wavefunctions. The important point
once again is that the integral for the moment

〈
ψg

∣∣ 1
rα

∣∣ψn

〉
will be dominated by the small r

region and in that range the behaviour of |ψn〉 is independent of r for all n and in all spatial
dimensions. This can be seen by writing equation (3) in the form H̃ 0ψ̃0 = E0ψ̃ where

H̃ 0 = − d2

dr2
+

(N − 1)(N − 3)

4r2
+ r2 (17)

with ψ̃ required to vanish at r = 0. The above is true for spherically symmetric states (l = 0).
For l 
= 0, N is replaced by N̄ = N − l. The energy levels of H̃ 0 are 4n + N , and the
wavefunctions are Cnr

N−1
2 e−r2

F
( − n, N

2 , r2
)
, where F is the hypergeometric function which

is finite at the origin and Cn is the normalization. Since ψ and ψ̃ are related by ψn = ψ̃n/r
( N−1

2 )

the wavefunction ψn = Cn e−r2
F

( − n, N
2 , r2

)
. Near the origin, e−r2 ∼ 1, F ∼ constant and

hence it follows that ψn is independent of r for r � 0. With this result it follows that
〈
ψg

∣∣ 1
rα

∣∣ψn

〉
has the behaviour ∼ ∫

r−α dNr which is exactly the behaviour tackled in equation (5).
Thus each of the integrals in equation (16) behaves as λ−µ and the overall λ dependence
is λ2(1−µ) = λ2Z . The structure of the mth order perturbation theory requires m such integrals
and since the wavefunction of H0 is always r-independent near the origin, it follows that the
λ-dependence of mth order perturbation theory will be λmZ . Thus, we have shown that by
using a suitable scaling argument, the singular behaviour of the perturbation theory for the
class of potentials r2 + λ

rα can be easily handled.
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